
djigger
An open-source performance analysis solution

● Performance Testing & Analysis @ several companies

● Depending on project : often no tools or tools that can’t be used

● Thread dumps are available : while (true) do kill -3 PID done

● Analyzing thread dumps manually is a pain

Let’s build our own thread dump analyzer !

Context

2012

Development

2012

Thread Dump

Analyzer

2013

Sampler

2014

Collector

2015 2016

Agent Full APM

(aggregate events)

(no more kill -3)

(24/7 archiving)

(instrument)

(distributed tracing)

public release

~ 10 companies use djigger in France and Switzerland

About performance analysis

Performance Analysis : gathering and interpreting necessary & sufficient data

to understand and optimize a system or solve a performance problem.

My definition

Performance Analysis : gathering and interpreting necessary & sufficient data

to understand and optimize a system or solve a performance problem.

Necessary : without the necessary data, we can’t understand nor solve the problem

Sufficient : runtimes are complex and we can’t afford to harvest every detail

Necessary and sufficient conditions

Performance Analysis : gathering and interpreting necessary & sufficient data

to understand and optimize a system or solve a performance problem.

Necessary : without the necessary data, we can’t understand nor solve the problem

Sufficient : runtimes are complex and we can’t afford to harvest every detail

Many factors affect our ability to do this correctly, not just tooling

It’s not just about tools

Many factors are at play...

Knowledge
of the stack

Problem
inputs

Permissions
&

environment

Monitoring
maturity

who owns the code?
may I access the system?

may I change things?

Many factors are at play...

Knowledge
of the stack

Problem
inputs

Permissions
&

environment

Monitoring
maturity

Many factors are at play...

do we have proper tooling?
are all environments monitored?
do I have the necessary data?

Permissions
&

environment

Monitoring
maturity

Knowledge
of the stack

Problem
inputs

Many factors are at play...

have I already seen this pattern?
are components closed/proprietary?

can I understand this runtime?

Knowledge
of the stack

Problem
inputs

Permissions
&

environment

Monitoring
maturity

Many factors are at play...

what’s the occurrence pattern?
what’s the desired behaviour?

what are the actual symptoms?

Knowledge
of the stack

Problem
inputs

Permissions
&

environment

Monitoring
maturity

About metrics

User CPU
Memory

Net I/O

Pool
usage

Cache hit
ratio

Disk I/O

There’s a ton of metrics out there

Logs

AWR / v$

Heap
dumps

Kern
CPU

Cache
Size

Queue
size

?

User CPU
Memory

Net I/O

Pool
usage

Cache hit
ratio

Disk I/O

I don’t play the elimination game (anymore)

Logs

AWR / v$

Heap
dumps

Kern
CPU

Cache
Size

Queue
size

What are the main actors of a program’s execution?

Let’s look at what the program is doing

What are the main actors of a program’s execution?

Threads.

What’s the most important information about a thread?

Let’s look at what the program is doing

What are the main actors of a program’s execution?

Threads.

What’s the most important information about a thread?

Its stack state (in particular, method calls).

..but what are java stacks blind to?

Let’s look at what the program is doing

What are the main actors of a program’s execution?

Threads.

What’s the most important information about a thread?

Its stack state (in particular, method calls).

..but what are java stacks blind to?

GC pauses.

Let’s look at what the program is doing

I check thread stacks and GC overhead first.

Look at what the program is doing

Analysis process

A 3-step approach to analyzing latency issues

WHEREWHAT WHY

A 3-step approach to analyzing latency issues

WHAT

ex.: a servlet call

A 3-step approach to analyzing latency issues

WHEREWHAT

ex.: a servlet call ex.: time is spent in DB

A 3-step approach to analyzing latency issues

WHERE WHYWHAT

ex.: a servlet call ex.: time is spent in DB ex.: 1-n pattern and
query can be cached

A 3-step approach to analyzing latency issues

WHERE WHYWHAT

Find out which events are
problematic (transaction,

method, click..)

Identify top consumers
in the execution trees

Read stacks & object data
to identify faulty or

optimizable behaviour

ex.: a servlet call ex.: time is spent in DB ex.: 1-n pattern and
query can be cached

sampling instrumentation

Collecting events

Collecting events

sampling instrumentation

Thread-dump events,
approximation of reality

Concrete measurements
and object capture

Collecting events

sampling instrumentation

without
agent

with
agent

Thread-dump events,
approximation of reality

Concrete measurements
and object capture

(for BCI)

Stacktrace Sampling

A dummy thread at runtime

mypackage.MyClass.main()

MyClass.doStuff() MyClass.doMoreStuff()

put
g
e
t

g
e
t

g
e
t

g
e
t

g
e
t

Object.wait()

acquire
Connection()

socketRead(
)

A dummy thread at runtime

mypackage.MyClass.main()

MyClass.doStuff() MyClass.doMoreStuff()

put
g
e
t

g
e
t

g
e
t

g
e
t

g
e
t

Object.wait()

acquire
Connection()

socketRead(
)

time

stacked
methods

A random thread dump

mypackage.MyClass.main()

MyClass.doStuff() MyClass.doMoreStuff()

put
g
e
t

g
e
t

g
e
t

g
e
t

g
e
t

Object.wait()

acquire
Connection()

socketRead(
)

at java.lang.Object.wait()
at mypackage.datasource.acquireConnection()
at mypackage.Myclass.doMoreStuff()
at mypackage.MyClass.main()

Sampling = periodical thread dumps

mypackage.MyClass.main()

MyClass.doStuff() MyClass.doMoreStuff()

put
g
e
t

g
e
t

g
e
t

g
e
t

g
e
t

Object.wait()

acquire
Connection()

socketRead(
)

Time-based events

e
e

e
e
e

e
e
e

e
e
e

e
e
e

e
e
e

e
e
e

e
e
e

e
e

e
e
e

e
e
e

e
e
e

e
e
e

e
e
e

e
e
e

e
e
e

e

e e e e e

Time-based aggregation

Tree aggregator

43%57%

14% 28% 43%

43%

Thread-based aggregation

Y%X%

A% B% C%

D%

Thread 1

Thread 2

Thread 3

Z%

Y%

Tree aggregator

What does it look like in djigger?

=

3-step approach with sampling

WHEREWHAT WHY

1 2 3
without
agent

search
aggregated

events

read stacks
and stats

drill-down
locally

Example

Example

Example

Instrumentation

A dummy thread at runtime (again)

mypackage.MyClass.main()

MyClass.doStuff() MyClass.doMoreStuff()

put()
g
e
t

g
e
t

g
e
t

g
e
t

g
e
t

Object.wait()

acquire
Connection()

socketRead(
)

Subscriptions

mypackage.MyClass.main()

MyClass.doStuff() MyClass.doMoreStuff()

put()
g
e
t

g
e
t

g
e
t

g
e
t

g
e
t

Object.wait()

acquire
Connection()

socketRead(
)

Active subscriptions:

Start event:

End event:

begin = 11:38:20.271, method= wait, duration= 599 ms

begin = 11:38:20.252, method= acquireConnection, duration= 613 ms

Subscription-based events

e
e

e

begin = 11:38:20.243, method= doMoreStuff, duration= 1223 ms

begin = 11:38:20.271, method= wait, duration= 599 ms

begin = 11:38:20.252, method= acquireConnection, duration= 613 ms

Transaction flags

e
e
e

begin = 11:38:20.243, method= doMoreStuff, duration= 1223 ms

tId= 1fa23

begin = 11:38:20.271, method= wait, duration= 599 ms

begin = 11:38:20.252, method= acquireConnection, duration= 613 ms

Object capture

executeQuery(“SELECT * FROM TABLE”)

e
e
e

begin = 11:38:20.243, …, data = “SELECT * FROM MYTABLE”

tId= 1fa23

begin = 11:38:20.271, ...

begin = 11:38:20.252, ...

Distributed transactions
e
e
e

begin = 11:38:20.243, ...

tId= 1fa23

JVM 1

JVM 2

begin = 11:38:20.252, ...

e
e

begin = 11:38:20.301, ...

tId= 87e01

drill-down

3-step approach with instrumentation

WHEREWHAT WHY

1 2 3

with
agent

refine

search
entry point

events

drill-down
across JVMs

capture
object data

What does it look like in djigger?

What does it look like in djigger?

handleRequest()

invoke()

invoke()

invoke()

...

invoke()

invoke()

invoke()

...

executeQuery()
executeQuery()
executeQuery()

What does it look like in djigger?

Component overview

connectors JMX, -javaagent, kill -3, jstack, process attach, ...

events

client

P

R

O

F

I
L

E

R

M

O

D

E

connectors JMX, -javaagent, kill -3, jstack, process attach, ...

events

harvest & analyze

A

P

MM

O

D

E

clientstore

collector

connectors JMX, -javaagent, kill -3, jstack, process attach, ...

events

harvest

analyze

persist

events

events

Download and try out djigger !

Download djigger at http://denkbar.io

http://denkbar.io

Thanks for your attention

